对数形式的函数中参数范围的探究
2013年8月13日 09:41 作者:何俊辉何俊辉
(新建县第二中学,江西 南昌 330100)
摘 要:对数函数是高考的一个重点考查的函数,对数形式的函数中的参数的范围的求法,是很多学生的疑点及难点。本文通过实例对这些问题进行探讨。
关键词:高中数学;对数函数;参数
中图分类号:G633 文献标识码:A 文章编号:
对数函数是高中教学中的一个初等函数,是高考的一个重点考查的函数,对于对数形式的函数中的参数的范围的求法,是很多学生的疑点及难点,遇到此类问题学生都无以下手,且有些资料对这个函数中的参数也常常出现错误.
本人通过数学实践,特对这些问题进行研究和探讨,现以这次期末考试中的一考题:“已知函数 的值域为R,求实数 的取值范围”进行了拓展。
题目:对于对数函数 解答下述参数问题
(1)若函数的定义域为R,求实数 的取值范围.
(2)若函数的值域为R,求函数 的取值范围.
(3)若函数在 为有意义,求实数的取值范围.
(4)若函数的值域为 ,求 的取值范围.
(5)若函数的定义域为Q,已知集合 且 ,求实数 的取值范围.
(6)若 在 内有零点,求实数 的取值范围.
(7)若函数 在 为增函数,求实数 的取值范围.
解:设
(1) 时 恒成立, ,即
的取值范围为 .(2)这是一个较难理解的问题:从: 的值域为R这一点思考 的值域为R,等价于 的函数值能取到 的一切值,理解为: 的值域包含区间 .
即
当 时 为一次函数,显然成立, 此时 的取值范围为 .(3)应注意在 内有意义与定义域的扩展含义是不同的,
命题等价于: 对 恒成立.
或 即 或
或 此时 的取值范围为 .(4)值域为 则
此时 的取值范围为 .(5)问题可转化为 在 内有解,从而得
在 内有解, 令
当 时, 此时 的取值范围为 .(6)方程 在 内有解,则 在 内有解
,当 时
在 内有解, 的取值范围为 .(7) 在 为增函数,根据复合函数的单调性可知
在 为增函数 必须包含于函数的定义域中
所以此时 的取值范围为 .
从以上几个问题的解决说明,对数式的函数中参数的求法是一个较为复杂的问题,根据不同的条件,选择适当的转比方法求解,要解决此类问题必须对对数函数的概念有很深刻的理解和体会,才能灵活运用知识作出准确的解答,并要在学习过程中不断的总结规律.